Abstract

This letter presents a novel robotic manipulation technique that we call robotic edge rolling. It refers to transporting a cylindrical object by rolling on its circular edge, as human workers might maneuver a gas cylinder on the ground. Our robotic edge rolling is achieved by controlling the object to both roll on its bottom edge in contact with the ground and slide on the surface of the robot's end effector. It can thus be regarded as a form of robotic dexterous, in-hand manipulation with nonprehensile grasps. We address the problem of grasp planning for edge rolling by studying how to design appropriately shaped end effectors with zero internal mobility and how to find feasible grasps for stably rolling the object quasi-dynamically with our simple end effectors. An extensive set of experiments is performed with a conventional manipulator arm on not only flat surfaces but also a U-shaped half-pipe track. Long-range edge rolling is demonstrated with a modular mobile manipulator that is capable of active steering control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.