Abstract
Energy-efficient human–robot collaboration poses significant challenges to the sustainable operation of production systems. Therefore, our work proposes novel robotic edge intelligence to address the issue. First, robotic edge intelligence is proposed to fully utilize the embedded computing capabilities of edge robots, and the state transition diagrams are developed for jobs, humans, and robots, respectively. Second, a multi-objective model is designed for the energy-efficient human–robot scheduling problem to evaluate the production performance and energy efficiency as a whole. Third, a heuristic algorithm is developed to search for the optimal solutions based on an artificial plant community, which is lightweight enough to be run on edge robots. Finally, a benchmark data set is developed, and a series of benchmark experiments are implemented to test the proposed system. The results demonstrate that the proposed method can effectively enhance energy efficiency and production performance with satisfying solution performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.