Abstract

In recent, control approaches for the human-like behavior in the field of service robotics have been attracting considerable attention, since most humans or animals perform various tasks uncomplicatedly. Hence simple control methods based on gaining a physical insight into human reaching movement in redundancy of DOFs have been proposed. In comparison with the conventional approaches, the proposed method tries to control directly robotic systems in task-space with the control signal composed of linear superposition of three terms 1) joint-damping, 2) virtual spring, and 3) virtual damper in task-space. In particular, our work contains a muscle tension effect of a human under the gravity. This give birth to energy efficient natural motions avoiding problems on repeatability of the motion and ill-posedness problems emerged in most of redundant DOF systems. Thus, this paper exhibits expendability of the position control into the orientation control and compliant behavior. It is verified with a real robotic arm that satisfies human-like movements and motion repeatability under kinematic redundancy of joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call