Abstract

Abstract Background Classically, transoccipital hippocampal depth electrode implantation requires a stereotactic headframe and arc and the patient to be placed in a seated or prone position, which can be cumbersome to position and uncomfortable for the surgeon. Robotic intracranial devices are increasingly being utilized for stereotactic procedures such as stereolectroencephalography (SEEG) but commonly require patients be placed in head-neutral position to perform facial registration. Objective Here we describe a novel robotic implantation technique where a stereotactic intracranial robot is used to place bilateral hippocampal depth electrodes in the lateral position. Methods Four patients underwent SEEG depth electrode placement, which included placement of bilateral hippocampal depth electrodes. Each patient was positioned in the lateral position and registered to the robot with laser facial registration. Trajectories were planned with the robotic navigation software, which then identified the appropriate entry points and trajectories needed to reach the targets. After electrode implantation, target localization was confirmed using computed tomography (CT). Results Electrodes targeting the amygdalohippocampal complex were accurate and there were no complications in this group. An average of seven electrodes were placed per patient. Ictal onset was localized for each patient. All patients subsequently underwent temporal lobectomy and 75% have been seizure free since surgery. Conclusions We have developed the Robot-Assisted Lateral Transoccipital Approach (RALTA), which is an advantageous technique for placing bilateral amygdalohippocampal depth electrodes using robotic guidance. Benefits of this technique include fewer electrodes required per patient and ease of positioning compared with seated or prone positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.