Abstract

To date, there have been many studies that have deployed robots as learning and teaching assistants in educational settings to investigate their pedagogical effects on learning and teaching. Hendler (2000) categorized the robots with which learners may interact in the future into five categories, i.e., toy robotics, pet robotics, interactive displays, service robotics including assistive ones, and educational robotics. Goodrich and Schultz (2007) classified the educational service robots into assistive and educational robotics. The robots that can serve for educational purposes can be divided into two categories: educational robotics (also referred to as hands-on robotics), and educational service robotics. The difference between these two types of robotics stems from the primary user groups. Educational robotics has been used by prosumers, a blend of producers and consumers, while educational service robots show a clear boundary between the producers and consumers. In general, the latter takes anthropomorphized forms to substitute or support teachers. It can also add more than what computers have offered to aid language learning because their anthropomorphic figures lower the affective filter and provide Total Physical Response (TPR) in terms of actions, which may lead to form social interactions. This chapter focuses on educational service robots. Taylor (1980) emphasized that computers have played important roles as educational tutors, tools and tutees. It seems that educational service robots can act as emotional tutors, tutoring assistants (teaching assistants), and peer tutors. The tutor or teaching assistant robots can also be a kind of assistant for innovative educational technologies for blended learning in order to obtain the knowledge and skills under the supervision and support of the teacher inside and outside the classroom. Examples of this include computers, mobile phones, Sky TV or IP TV channels and other electronics. The studies of Mishra and Koehler (2006) probed into teachers’ knowledge, building on the idea of Pedagogical Content Knowledge (PCK) suggested by Shulman (1987). They extended PCK to consider the necessary relationship between technology and teachers’ subject knowledge and pedagogy, and called this Technological Pedagogical Content Knowledge (TPCK), as shown in Fig. 3. An educational service robot as a teaching and learning assistant for blended learning is divided into three categories: the tele-operated (or tele-conference, tele-presence) type, autonomous type, and transforming type, according to the location of TPCK, as displayed in Table 1. Source: Human-Robot Interaction, Book edited by: Daisuke Chugo, ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.