Abstract

A new method is proposed to increase the reliability of generating symbolic plans by extending the Semantic-Knowledge Based (SKB) plan generation to take into account the amount of information and uncertainty related to existing objects, their types and properties, as well as their relationships with each other. This approach constructs plans by depending on probabilistic values which are derived from learning statistical relational models such as Markov Logic Networks (MLN). An MLN module is established for probabilistic learning and inference together with semantic information to provide a basis for plausible learning and reasoning services in support of robot task-planning. The MLN module is constructed by using an algorithm to transform the knowledge stored in SKB to types, predicates and formulas which represent the main building block for this module. Following this, the semantic domain knowledge is used to derive implicit expectations of world states and the effects of the action which is nominated for insertion into the task plan. The expectations are matched with MLN output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.