Abstract

An innovative multi-robot simultaneous localization and mapping (SLAM) is proposed based on a mobile Ad hoc local wireless sensor network (Ad-WSN). Multiple followed-robots equipped with the wireless link RS232/485 module act as mobile nodes, with various on-board sensors, Tp-link wireless local area network cards, and Tp-link wireless routers. The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network. The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots. This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments. In post-disaster areas, the network is usually absent or variable and the site scene is cluttered with obstacles. To adapt to such harsh situations, the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage. The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN. Therefore, the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment. Simulations and experiments validate the improved performances of the exploration area coverage, object marked, and loop closure, which are adapted to search and rescue post-disaster cluttered environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.