Abstract

This paper proposed a robot reinforcement learning method based on learning classifier system. A learning Classifier System is a rule-based machine learning system that combines reinforcement learning and genetic algorithms. The reinforcement learning component is responsible for adjusting the strength of rules in the system according to some reward obtained from the environment. The genetic algorithm acts as an innovation discovery component which is responsible for discovering new better learning rules. The advantages of this approach are its rule-based representation, which can be easily reduce learning space, online learning ability, robustness .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.