Abstract

This paper presents a future-focused approach for robot programming based on augmented trajectories. Using a mixed reality head-mounted display (Microsoft Hololens) and a 7-DOF robot arm, we designed an augmented reality (AR) robotic interface with four interactive functions to ease the robot programming task: 1) Trajectory specification. 2) Virtual previews of robot motion. 3) Visualization of robot parameters. 4) Online reprogramming during simulation and execution. We validate our AR-robot teaching interface by comparing it with a kinesthetic teaching interface in two different scenarios as part of a pilot study: creation of contact surface path and free space path. Furthermore, we present an industrial case study that illustrates our AR manufacturing paradigm by interacting with a 7-DOF robot arm to reduce wrinkles during the pleating step of the carbon-fiber-reinforcement-polymer vacuum bagging process in a simulated scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.