Abstract

Precision assembly is one of the primary goals of robots in manufacturing. Assembly strategies combining active and passive compliant control are presented herein. In this article, we construct a high-dimensional configuration space of robot assembly and then divide the configuration space to its subspaces. We further map the active compliant motion and the passive compliant motion of the manipulator into different subspaces. In one subspace, we construct the constraint function and design the passive compliant motion of the manipulator in the constraint region, where the uncertainties of the system should be eliminated by the environment constraints. In another subspace, we design a force controller based on the low-resolution force sensory information to control the position of the robot. The proposed method avoids the design of precision mechanism systems and the usage of high-quality sensors. Several experiments pertaining to peg-in-hole insertions are conducted to demonstrate the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.