Abstract

Robot manipulators are programmable mechanical systems designed to execute a great variety of tasks in a repetitive way. In industrial environment, while productivity increases, cost reduction associated with robotic operation and maintenance can be obtained as a result of decreasing the values of dynamic quantities such as torque and jerk, with respect to a specific task. Furthermore, this procedure allows the execution of various tasks that require maximum system performance. By including obstacle avoidance ability to the robot skills, it is possible to improve the robot versatility, i.e., the robot can be used in a variety of operating conditions. In the present contribution, a study concerning the dynamic characteristics of serial robot manipulators is presented. An optimization strategy that considers the obstacle avoidance ability together with the dynamic performance associated with the movement of the robot is proposed. It results an optimal path planning strategy for a serial manipulator over time varying constraints in the robot workspace. This is achieved by using multicriteria optimization methods and optimal control techniques. Numerical simulation results illustrate the interest of the proposed methodology and the present techniques can be useful for the design of robot controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call