Abstract

In this work, we consider the problem of robot navigation, under spatial and temporal constraints, modeled as Metric Interval Temporal Logic (MITL) formulas. We introduce appropriate control schemes, driven by time-dependent vector fields, that satisfy both the problems of (a) entering an arbitrary neighborhood of the workspace within a given time interval, and, (b) avoiding collision with any given obstacle. We model the problems (a) and (b) as MITL formulas, defined upon a specific class of atomic propositions, and proceed in building more complex MITL expressions that can be decomposed into a conjunction of the former formulas. Finally, we propose a way to generate a hybrid automaton, whose execution satisfies the given MITL formula, by appropriately composing the control schemes. We validate our methodology via a numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.