Abstract

This paper addresses the problem of mobile robot navigation using artificial potential fields. Many potential field based methodologies are found in the robotics literature, but most of them have problems with spurious local minima, which cause the robot to stop before reaching its target position. Although some free of local minima methodologies are found in the literature, none of them are easy to implement and generalize for complex shaped environments and robots. We propose a perfect analogy between electrostatic field computation and robot path planning. Thus, an easy solution to the problem, which is based on standard finite-element methods, can be applied with generic geometries and can even take into account the robot's orientation. To demonstrate the elegance of the proposed methodology, several experimental results with actual mobile robots are included

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call