Abstract

We propose a new approach to robot path planning that consists of building and searching a graph connecting the local minima of a potential function defined over the robot's configuration space. A planner based on this approach has been implemented. This planner is consider ably faster than previous path planners and solves prob lems for robots with many more degrees of freedom (DOFs). The power of the planner derives both from the "good" properties of the potential function and from the efficiency of the techniques used to escape the local min ima of this function. The most powerful of these tech niques is a Monte Carlo technique that escapes local min ima by executing Brownian motions. The overall approach is made possible by the systematic use of distributed rep resentations (bitmaps) for the robot's work space and configuration space. We have experimented with the plan ner using several computer-simulated robots, including rigid objects with 3 DOFs (in 2D work space) and 6 DOFs (in 3D work space) and manipulator arms with 8, 10, and 31 DOFs (in 2D and 3D work spaces). Some of the most significant experiments are reported in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.