Abstract

Magnetic motion capture sensors (MMCS) are not commonly used for robot control due to the need for complex, resource-consuming calibration to correct error introduced by the magnetic sensor. We propose avoiding such calibration using a rule-based controller that only uses spatial coordinates from the magnetic sensor. This controller uses a sparse look-up table of spatial coordinates and actions conducted by the robot and reacts to the presence of the sensor near reference points. The control method was applied to manipulate a robotic camera to track a catheter-shaped sensor inside vessels silicone models. A second evaluation was done guiding a mechanism to reconstruct catheter insertion in major silicone vasculature models. The robotic camera tracked the catheter by reacting to the sensor within 10 mm of each reference point. The catheter insertion mechanism reconstructed the catheter trajectory by reacting to the sensor within 6 mm of each reference point. We found that the proposed method allowed robot control in a bounded space without having to correct for the magnetic tracker output distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.