Abstract

This paper describes a locomotion strategy for robots based on the interaction between two fluids, through the development of an untethered mobile robot. The fundamental principle of robot locomotion is to exploit the active deformations of ferrofluid caused by internal magnetic fields, which generate reaction forces to the surrounding fluid (in this study, water). The developed robot is equipped with two permanent magnets (PMs), two electromagnets (EMs), two clusters of ferrofluid, and a control unit with batteries. It has a length, width, and mass of 107 mm, 94 mm, and 127 g, respectively. In the robot, PMs are used to hold clusters of ferrofluid. The activation of EMs by the controller achieves forward and rotational movements of the robot. Experimental results show the forward speed and rotational speed in water to be 2.7 mm/s (at a driving frequency of 9 Hz) and 1.2°/s (at a driving frequency of 7 Hz), respectively. The measured thrust force of the robot is 2 mN, further supporting the concept of robot locomotion by fluid–fluid interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.