Abstract

This paper addresses the issue of how to endow robots with motion skills, flexibility, and adaptability similar to human arms. It innovatively proposes a hybrid-primitive-frame-based robot skill learning algorithm and utilizes the policy improvement with a path integral algorithm to optimize the parameters of the hybrid primitive framework, enabling robots to possess skills similar to human arms. Firstly, the end of the robot is dynamically modeled using an admittance control model to give the robot flexibility. Secondly, the dynamic movement primitives are employed to model the robot's motion trajectory. Additionally, novel stiffness primitives and damping primitives are introduced to model the stiffness and damping parameters in the impedance model. The combination of the dynamic movement primitives, stiffness primitives, and damping primitives is called the hybrid primitive framework. Simulated experiments are designed to validate the effectiveness of the hybrid-primitive-frame-based robot skill learning algorithm, including point-to-point motion under external force disturbance and trajectory tracking under variable stiffness conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.