Abstract
Recent studies in surgical robotics have focused on automating common surgical subtasks such as grasping and manipulation using deep reinforcement learning (DRL). In this work, we consider surgical endoscopic camera control for object tracking e.g. using the endoscopic camera manipulator (ECM) from the da Vinci Research Kit (dVRK) (Intuitive Inc., Sunnyvale, CA, USA) as a typical surgical robot learning task. A DRL policy for controlling the robot joint space movements is first trained in a simulation environment and then continues the learning in the real world. To speed up training and avoid significant failures (in this case, losing view of the object), human interventions are incorporated into the training process and regular DRL is combined with generative adversarial imitation learning (GAIL) to encourage imitating human behaviors. Experiments show that an average reward of 159.8 can be achieved within 1000 steps compared to only 121.8 without human interventions, and the view of the moving object is lost only twice during the training process out of 3 trials. These results show that human interventions can improve learning speed and significantly reduce failures during the training process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.