Abstract

This paper deals with the problem of modeling, initialization, and control of mobile robots formation. We suggest to use a new family of methods that consists of a combination between classical guidance laws and kinematics rules. These methods allow modeling and controlling a dynamic robotic formation using sets of differential equations that give the relative motion between the robots. These differential equations give the range rate and the visibility angle between leaders and followers. Graph theory is used to store the relationship leader-follower and plan the formation by using three different matrices. The configuration of the formation is based on these matrices. Initialization of formation is also considered, where different approaches are suggested. Because of the nature of the kinematics laws, it is easy to model, initialize, and keep any formation shape. Simulation is provided to illustrate the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.