Abstract

Study DesignAn in vitro human cadaveric biomechanics study.ObjectiveA proof-of-concept study to quantify whether or not differences in segmental mobility associated with spinal instability could be detected by a robotic distraction system.MethodsTesting was performed in fresh human cadaveric tissue. A prototype Robotic Middle Column Distractor was attached unilaterally to the pedicles of L3-4. Distraction forces up to 150 N were applied first in the intact state, and following discectomy of L3-4. Motions were recorded by time-indexed visual and fluoroscopic images, and analyzed to measure actual motions achieved. Functions of the robot unit were monitored during the procedure and evaluated qualitatively.ResultsA difference of 2.5 mm in z-axis motion was detected at 150 N load between the intact and post-discectomy states. The robot coupled with the image analysis method was able to clearly detect the difference between the intact (“stable”) and post-discectomy (“unstable”) spine. Data analysis of fluoroscopic images taken during the procedure showed greater motion than perceived by the investigators from qualitative review of visual data. All monitored robot functions performed within design parameters without error.ConclusionThe study demonstrates the feasibility and utility of utilizing an intraoperative robotic distractor to measure the amount of spinal mobility present at a level. This could lead to an important clinical tool for both diagnostic functions as well as operative assist functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.