Abstract

BackgroundRobotic rehabilitation after stroke provides the potential to increase and carefully control dosage of therapy. Only a small number of studies, however, have examined robotic therapy in the first few weeks post-stroke. In this study we designed robotic upper extremity therapy tasks for the bilateral Kinarm Exoskeleton Lab and piloted them in individuals with subacute stroke. Pilot testing was focused mainly on the feasibility of implementing these new tasks, although we recorded a number of standardized outcome measures before and after training.MethodsOur team developed 9 robotic therapy tasks to incorporate feedback, intensity, challenge, and subject engagement as well as addressing both unimanual and bimanual arm activities. Subacute stroke participants were assigned to a robotic therapy (N = 9) or control group (N = 10) in a matched-group manner. The robotic therapy group completed 1-h of robotic therapy per day for 10 days in addition to standard therapy. The control group participated only in standard of care therapy. Clinical and robotic assessments were completed prior to and following the intervention. Clinical assessments included the Fugl-Meyer Assessment of Upper Extremity (FMA UE), Action Research Arm Test (ARAT) and Functional Independence Measure (FIM). Robotic assessments of upper limb sensorimotor function included a Visually Guided Reaching task and an Arm Position Matching task, among others. Paired sample t-tests were used to compare initial and final robotic therapy scores as well as pre- and post-clinical and robotic assessments.ResultsParticipants with subacute stroke (39.8 days post-stroke) completed the pilot study. Minimal adverse events occurred during the intervention and adding 1 h of robotic therapy was feasible. Clinical and robotic scores did not significantly differ between groups at baseline. Scores on the FMA UE, ARAT, FIM, and Visually Guided Reaching improved significantly in the robotic therapy group following completion of the robotic intervention. However, only FIM and Arm Position Match improved over the same time in the control group.ConclusionsThe Kinarm therapy tasks have the potential to improve outcomes in subacute stroke. Future studies are necessary to quantify the benefits of this robot-based therapy in a larger cohort.Trial registration: ClinicalTrials.gov, NCT04201613, Registered 17 December 2019—Retrospectively Registered, https://clinicaltrials.gov/ct2/show/NCT04201613.

Highlights

  • Robotic rehabilitation after stroke provides the potential to increase and carefully control dosage of therapy

  • We developed a set of rehabilitation tasks, in consultation with therapists, physicians and stroke survivors, for use in a pilot trial exploring the impact of robotic rehabilitation beginning in the subacute phase post-stroke

  • Ten participants were in the standard of care group and nine were in the robotic therapy group

Read more

Summary

Introduction

Robotic rehabilitation after stroke provides the potential to increase and carefully control dosage of therapy. Robotics have the potential to measure and increase the number of movement repetitions an individual performs in a given time period compared to conventional therapy, and some have speculated that this should lead to improved recovery [13,14,15,16]. End effector devices are usually simpler, only directly interacting with the most distal parts of the participant whereas exoskeleton devices can align with one or many joints allowing for direct measurement and manipulation of joint movement [18]. These robot types can be further divided into unimanual or bimanual, active or passive, and planar or 3-dimensional [19]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call