Abstract
Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.