Abstract

The complete and parametrically continuous (CPC) robot kinematic modeling convention has no model singularities and allows the modeling of the robot base and tool in the same manner by which the internal links are modeled. These two properties can be utilized to construct robot kinematic error models employing the minimum number of kinematic error parameters. These error parameters are independent and span the entire geometric error space. The BASE and TOOL error models are derived as special cases of the regular CPC error model. The CPC error model is useful for both kinematic identification and kinematic compensation. This paper focuses on the derivation of the CPC error models and their use in the experimental implementation of robot calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.