Abstract

(1) Background: Conventional shoe manufacturing involves many processes that most workers avoid because of loud noises and harmful environments. Therefore, a robot-based shoe manufacturing system is needed to implement an automated process. (2) Aim: We propose a new robot-based shoe manufacturing automation system that includes an automatic robotic solution for replacing the manual manufacturing processes of the upper and sole. (3) Methods: For the upper manufacturing process, a new trajectory acquisition system with a digitizer and a shoe last turning device is proposed. A method to plan the robot’s tool path for roughing and cementing by industrial robot manipulators is also presented. For the sole manufacturing process, we adopted an industrial robot manipulator with a 3-D scanning system and a cementing tool. A trajectory generation algorithm for cementing the outer and inner sides of the sole by transforming 3-D information of the sole into a 6-D posture for the robot is proposed. (4) Results: All developed systems and proposed algorithms are applied to an automated production testbed, and their performances are experimentally verified. (5) Conclusions: The proposed system and methods can be applied for upper and sole manufacturing processes according to evaluation experiments in a demonstrative production line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call