Abstract

Reduction in femoral shaft fractures may be difficult to achieve with minimal invasive techniques. Malalignment and high intraoperative radiation exposures often results. Our hypothesis is that robot assisted fracture reduction may improve the precision of reduction while reducing the amount of radiation exposure. We present a telemanipulator system for robot assisted reduction of femoral shaft fractures. The telemanipulated reduction is performed with a 2 dof input device with haptical feedback based on intraoperatively acquired 3D imaging data. We performed a test series to measure achievable reduction accuracies on artificially broken human femur bones without soft tissues. Furthermore, we performed first tests for the reduction on complete human legs in 3D. It could be shown, that telemanipulated reduction of such fractures in 3D is yielding very good accuracies in an intuitive and efficient way. Robot assisted fracture reduction can improve the reduction accuracy and reduce the X-ray irradiation exposure to the patient and the OR staff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call