Abstract
ABSTRACT In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm is employed to enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and cretic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms. The testing shows the robust performance of the DDPG algorithm for empowering robot arm manoeuvring in complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.