Abstract

The purpose of this study was to examine the neural activity underlying an implicit motor learning task. In particular, our goals were to determine whether initial phases of procedural learning of a motor task involve areas of the brain distinct from those involved in later phases of learning the task, and what changes in neural activity coincide with performance improvement. We describe a novel integration of robotic technology with functional brain imaging and its use in this study of implicit motor learning. A portable robotic device was used to generate forces that disturbed the subjects' arm movements, thereby generating a "virtual mechanical environment" that the subjects learned to manipulate. Positron emission tomography (PET) was used to measure indices of neural activity underlying learning of the motor task. Eight health, right-handed male subjects participated in the study. Results support the hypothesis that different stages of implicit learning (early and late implicit learning) occur in an orderly fashion, and that distinct neural structures may be involved in these different stages. In particular, neuroimaging results indicate that the cortico-striatal loop may play a significant role during early learning, and that the cortico-cerebellar loop may play a significant role during late learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.