Abstract

This article proposes a robocentric formulation for quadrotor visual servoing. This formulation presents the task-specific state dynamics of the quadrotor in its body reference frame. Compared with other visual servoing methods, our method allows tightly and integrated state estimation and control on the same robocentric model, and allows a faster system response in aggressive quadrotor flights. On the theory level, we prove the controllability and observability of the proposed robocentric model. Then, we design an on-manifold Kalman filter for the estimation and an on-manifold iterative model predictive control for motion planning and control. We verify our proposed formulation and controller in two crucial quadrotor flight tasks: 1) hovering; and 2) dynamic obstacle avoidance. Experiment results show that the quadrotor is able to resist large external disturbances and recover its position and orientation from two reference visual features. Moreover, the quadrotor is able to avoid dynamic obstacles reliably at a relative speed up to 7.4 m/s, demonstrating the effectiveness of our visual servoing methods in agile quadrotor flights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.