Abstract

The early network of axons in the embryonic brain provides connectivity between functionally distinct regions of the nervous system. While many of the molecular interactions driving commissural pathway formation have been deciphered, the mechanisms underlying the development of longitudinal tracts remain unclear. We have identified here a role for the Roundabout (Robo) family of axon guidance receptors in the positioning of longitudinally projecting axons along the dorsoventral axis in the embryonic zebrafish forebrain. Using a loss-of-function approach, we established that Robo family members exhibit complementary functions in the tract of the postoptic commissure (TPOC), the major longitudinal tract in the forebrain. Robo2 acted initially to split the TPOC into discrete fascicles upon entering a broad domain of Slit1a expression in the ventrocaudal diencephalon. In contrast, Robo1 and Robo3 restricted the extent of defasciculation of the TPOC. In this way, the complementary roles of Robo family members balance levels of fasciculation and defasciculation along this trajectory. These results demonstrate a key role for Robo–Slit signaling in vertebrate longitudinal axon guidance and highlight the importance of context-specific guidance cues during navigation within complex pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call