Abstract

Climate change causes the global redistribution of precipitation, yet little is known about the effects of the changes in precipitation intensity and frequency on the seedlings of wood trees in warm temperate forests. In this study, we focused on the effects of variability in both the intensity and frequency of water supply on the physiological traits, biomass, and growth of an important plantation wood species, Robinia pseudoacacia. In the greenhouse, we exposed R. pseudoacacia seedlings to three rainfall intensity and three rainfall frequency treatments. The results from the 62-day experiment revealed that lower rainfall intensity and frequency significantly reduced the photosynthetic performance, growth, and biomass of the tree seedlings. In lower rainfall intensity and frequency conditions, the seedlings had improved water absorption and utilization by increasing the water use efficiency and root shoot ratio, and reduced water consumption by defoliating the compound leaves of the lower crown. More importantly, we found that R. pseudoacacia seedlings were more sensitive to rainfall frequency than to rainfall intensity. Therefore, our results suggest that increasing the irrigation water, especially irrigation frequency, could better facilitate the survival and growth of R. pseudoacacia seedlings and eventually promote the process of vegetation restoration in the future global climate change context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call