Abstract

Let $\varphi(n)$ be the Euler function, $\sigma(n)=\sum_{d\mid n}d$ the sum of divisors function and $\gamma=0.577\ldots$ the Euler constant. In 1982, Robin proved that, under the Riemann hypothesis, $\sigma(n)/n < e^\gamma \log\log n$ holds for $n > 5040$ and that this inequality is equivalent to the Riemann hypothesis. The aim of this paper is to give a similar equivalence for $n/\varphi(n)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.