Abstract

A low-loss and compact optical delay element is devised to be integrated into existing White cell-based true-time delay systems. The delay element is based on a multiple-bounce cell that consists of simple optical components, which was initially described by Claude Robert for spectroscopy. We hereby provide a comprehensive analysis of the Robert cell and propose that it can be modified in a number of ways to produce discrete and variable time delays up to hundreds of ns. The Robert cell show appealing traits compared to traditional optical delay devices because it relies on reflections within a system of mirrors to produce time delays, and this mechanism reduces the physical size and optical losses compared to traditional approaches for long delays. We also illustrate how modified Robert cells can be designed such that they can be compatibly combined with White cell-based true-time delay systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.