Abstract

Chocolate is a highly appreciated food that develops its characteristic flavors in large part during the roasting of cacao beans. Many functional classes have been noted for their importance to chocolate flavor, including volatile organic sulfur compounds (VSCs). Despite this, the effect of roasting on the concentration of VSCs has never been thoroughly assessed. Here, we studied the effects of roasting temperature, time, and cacao origin on the formation of VSCs. Twenty-seven 100% chocolate samples made from cacao from three different origins and roasted according to an I-optimal experimental design were analyzed by comprehensive gas chromatography with sulfur-selective detection (GCxGC-SCD). For two compounds, dimethyl disulfide and dimethyl trisulfide, the effects of roasting time, roasting temperature, and cacao origin were modelled using response surface methodology and semi-quantified relative concentration. Overall, roasting increased the number of sulfur-containing volatiles present in chocolate, with a total of 28 detected, far more than previously thought. Increased roasting time and especially roasting temperature were found to significantly increase the concentration of VSCs (p < 0.05), while cacao origin effects were only seen for dimethyl disulfide (p < 0.05). The identity of most VSCs remains tentative, and more research is needed to unravel the impact of these volatiles on flavor perception in chocolate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.