Abstract

To comprehensively reuse lead-zinc tailings, leaching residue (LR) of solid by-products was produced after the recovery of valuable metals. This study provided a “waste-ecology” strategy by a simple, inexpensive method of roasting prepared highly active silicon modified tailing (HAST) to eliminate the environment risk of LR, and investigates performance and mechanism of HAST as sorbents and passivators. The results indicated that HAST possesses high pH, abundant mineral content, microporous structure and high stability. The adsorption kinetic experiment revealed that chemisorption is the main reaction and the Qm of Cd via Langmuir model is 72.75 mg/g. As further demonstrated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis, the Cd was adsorbed onto the HAST surface successfully, with the main interaction mechanisms involving ion exchange, complexation, precipitation and electrostatic interaction. Besides, the soil incubation experiment results showed that HAST had positive effects on exchange fractions (Cd) converting to stable fractions in soil, which modifies Cd migration and transformation, HAST added into soil decreased the DTPA-Cd by 4.7%–8.1%, 5.9–9.8% and 9.1%–13.4%, respectively, in different stages, as compared with the control. Therefore, this study provides a novel strategy to address LR recycling, and the relevant, wastewater and soil treatment, which has high practicability for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call