Abstract

We performed extensive quasiclassical trajectory calculations for the H+C2D2→HD+C2D/D2+C2H reaction based on a recently developed, global and accurate potential energy surface by the fundamental-invariant neural network method. The direct abstraction pathway plays a minor role in the overall reactivity, which can be negligible as compared with the roaming pathways. The acetylene-facilitated roaming pathway dominates the reactivity, with very small contributions from the vinylidene-facilitated roaming. Although the roaming pathways proceed via the short-lived or long-lived complex forming process, the computed branching ratio of product HD to D2 is not far away from 2:1, implying roaming dynamics for this reaction is mainly contributed from the long-lived complex-forming process. The resulting angular distributions for the two product channels are also quite different. These computational results give valuable insights into the significance and isotope effects of roaming dynamics in the biomolecular reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call