Abstract

Abstract: Roads are important components of landscapes; they fragment habitat, facilitate invasive species spread, alter hydrology, and influence patterns of land use. Previous research on the ecological impacts of roads may have underestimated their effect because currently available sources of road data do not include the full road network. We compared differences in road density and landscape pattern among U.S. Census Bureau TIGER line files, U.S. Geological Survey 1:100,000‐scale digital line graphs, and U.S. Geological Survey 1:24,000‐scale digital raster graphics in northern Wisconsin to road data derived from 1:40,000‐scale digital orthophotos. Road density measured from digital orthophotos (2.82 km/km2) was significantly greater than that of digital raster graphics (1.62 km/km2) and more than double that of digital line graphs (1.21 km/km2) and TIGER (1.27 km/km2) data. The increased road densities in raster graphics and orthophoto data were mainly due to the addition of minor roads. When all roads were used to define patch boundaries, landscape metrics produced with orthophoto data showed significantly greater levels of fragmentation than those based on line or raster graphics. For example, maximum patch size was 1074 ha and total edge was 109 km for line graphs, compared with 686 ha and 211 km for orthophoto data. Roads are missing in commonly used data, primarily because mapping standards systematically exclude minor roads. These standards are not ecologically based and may result in false assumptions about the ecological effects of roads. We recommend that future studies take special consideration of the completeness of road data and consider whether all ecologically relevant roads are included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call