Abstract
BackgroundContinuous waveform monitoring is standard-of-care for patients at risk for or with critically illness. Derived from waveforms, heart rate, respiratory rate and blood pressure variability contain useful diagnostic and prognostic information; and when combined with machine learning, can provide predictive indices relating to severity of illness and/or reduced physiologic reserve. Integration of predictive models into clinical decision support software (CDSS) tools represents a potential evolution of monitoring.MethodsWe perform a review and analysis of the multidisciplinary steps required to develop and rigorously evaluate predictive clinical decision support tools based on monitoring.ResultsDevelopment and evaluation of waveform-based variability-derived predictive models involves a multistep, multidisciplinary approach. The stepwise processes involves data science (data collection, waveform processing, variability analysis, statistical analysis, machine learning, predictive modelling), CDSS development (iterative research prototype evolution to commercial tool), and clinical research (observational and interventional implementation studies, followed by feasibility then definitive randomized controlled trials), and poses unique challenges (including technical, analytical, psychological, regulatory and commercial).ConclusionsThe proposed roadmap provides guidance for the development and evaluation of novel predictive CDSS tools with potential to help transform monitoring and improve care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.