Abstract
CodY is a global transcriptional regulator that is known to control, directly or indirectly, expression of more than 100 genes and operons in Bacillus subtilis. Using a combination of mutational analysis and DNase I footprinting experiments, we identified two high-affinity CodY-binding sites that contribute to repression of the ybgE gene and appear to act independently. One of these sites, located 80 bp downstream of the transcription start site, accounted for the bulk of ybgE repression. Using in vitro transcription experiments, we demonstrated that in the presence of CodY, a shorter-than-expected ybgE transcript that terminates at the downstream CodY-binding site was synthesized. Thus, CodY binding to the downstream site represses transcription by a roadblock mechanism. Similar premature termination of transcription was observed for bcaP and yufN, two other CodY-regulated genes with binding sites downstream of the promoter. In accord with the roadblock mechanism, CodY-mediated repression at downstream sites was partly relieved if the transcription–repair coupling factor Mfd was inactivated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.