Abstract

To be successful, automated vehicles (AVs) need to be able to manoeuvre in mixed traffic in a way that will be accepted by road users, and maximises traffic safety and efficiency. A likely prerequisite for this success is for AVs to be able to communicate effectively with other road users in a complex traffic environment. The current study, conducted as part of the European project interACT, investigates the communication strategies used by drivers and pedestrians while crossing the road at six observed locations, across three European countries. In total, 701 road user interactions were observed and annotated, using an observation protocol developed for this purpose. The observation protocols identified 20 event categories, observed from the approaching vehicles/drivers and pedestrians. These included information about movement, looking behaviour, hand gestures, and signals used, as well as some demographic data. These observations illustrated that explicit communication techniques, such as honking, flashing headlights by drivers, or hand gestures by drivers and pedestrians, rarely occurred. This observation was consistent across sites. In addition, a follow-on questionnaire, administered to a sub-set of the observed pedestrians after crossing the road, found that when contemplating a crossing, pedestrians were more likely to use vehicle-based behaviour, rather than communication cues from the driver. Overall, the findings suggest that vehicle-based movement information such as yielding cues are more likely to be used by pedestrians while crossing the road, compared to explicit communication cues from drivers, although some cultural differences were observed. The implications of these findings are discussed with respect to design of suitable external interfaces and communication of intent by future automated vehicles.

Highlights

  • According to the Society for Automotive Engineers (SAE 2018), highly automated (Level 4) driving is “the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene”

  • Since a particular observation could include more than one event type, these behaviours were not mutually exclusive, and the data presented in this table, adds up to more than 100%

  • From the 701 interactions observed across the six different locations, the results showed that there was almost no explicit communication message provided to pedestrians by the vehicles observed

Read more

Summary

Introduction

According to the Society for Automotive Engineers (SAE 2018), highly automated (Level 4) driving is “the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene” An example of such vehicles is the automated buses and shuttles mostly used for demonstration and research purposes in many cities around the world, where conventional vehicle controls such as steering wheel and pedals are removed. In these vehicles, a “safety driver” monitors the system in case of emergencies, or system limitations, and some form of joystick and/or button is used to control the vehicle, if and when required. In terms of human factors, the focus in these trials has purely been on the on-board users’ experience of the system, rather than any interactions with external road users

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call