Abstract
A review concerning road tunnel fire safety and risk is presented. In particular different perspectives and methods on safety and risk are discussed. Road tunnel fire safety usually involves high uncertainty and high-stakes decisions. Thus, a wider group of stakeholders and different types of knowledge should be included in the fire safety analysis and evaluation, than what is required by technical risk analyses. It is argued that the decision process should not be separated from the design and safety evaluation as they are strongly dependent and iterative processes. Decision theory can guide the design and decision process in negotiation with stakeholders. Key parameters for the decision can be analysed through a combination of functional requirements, societal and political values, safety engineering, safety factors and systems theory. By taking an organisational viewpoint, potential latent and active errors can be analysed and a good safety culture can be engineered. In order to improve the safety culture of truck companies, regulation ensuring proper maintenance, training and quality management may be necessary in a competitive global economy.
Highlights
Despite sometimes heavy regulation and sophisticated assessment methods, accidents continue to occur
Several studies suggest that large uncertainties can be expected in a Quantitative Risk Analysis (QRA) (Amendola 1986; Contini et al 1991; Lauridsen et al 2001a,b; Fabbri and Contini 2009), this is not least the case for road tunnels, where data is sparse and models for basic phenomenon such as fire behaviour, human behaviour and fire spread include rough assumptions, if they are at all considered (PIARC 2008; Ferkl and Dix 2011; Kirytopoulos and Kazaras K 2011; Kazaras et al 2012; Rein et al 2009)
The analysis shows that fire spread is one of the key factors behind escalating consequences, both in terms of fatalities and tunnel downtime (Kim et al 2010)
Summary
Despite sometimes heavy regulation and sophisticated assessment methods, accidents continue to occur. A recent example is the Fukushima Daiichi nuclear power plant accident in 2011, which happened due to an earthquake followed by a 14 m tsunami wave. The plant had been designed for a 6 m wave despite that more severe waves had occurred in the past. Severe flooding have happened near nuclear power plants before, why have we not learned (Epstein 2012; Epstein et al 2012)?. In order to improve fire safety, other methods and perspectives on safety and risk can contribute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.