Abstract

As one of the most important components of urban space, an outdated inventory of road-side trees may misguide managers in the assessment and upgrade of urban environments, potentially affecting urban road quality. Therefore, automatic and accurate instance segmentation of road-side trees from urban point clouds is an important task in urban ecology research. However, previous works show under- or over-segmentation effects for road-side trees due to overlapping, irregular shapes and incompleteness. In this paper, a deep learning framework that combines semantic and instance segmentation is proposed to extract single road-side trees from vehicle-mounted mobile laser scanning (MLS) point clouds. In the semantic segmentation stage, the ground points are filtered to reduce the processing time. Subsequently, a graph-based semantic segmentation network is developed to segment road-side tree points from the raw MLS point clouds. For the individual tree segmentation stage, a novel joint instance and semantic segmentation network is adopted to detect instance-level roadside trees. Two complex Chinese urban point cloud scenes are used to evaluate the individual urban tree segmentation performance of the proposed method. The proposed method accurately extract approximately 90% of the road-side trees and achieve better segmentation results than existing published methods in both two urban MLS point clouds. Living Vegetation Volume (LVV) calculation can benefit from individual tree segmentation. The proposed method provides a promising solution for ecological construction based on the LVV calculation of urban roads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.