Abstract
This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely segment(s) is a crucial issue for the road-matching problem. The selection strategy merges several criteria using Belief theory. Particular attention is given to the development of belief functions from measurements and estimations of relative distances, headings, and velocities. Experimental results using data from antilock brake system sensors, the differential Global Positioning System receiver, and the accurate digital roadmap illustrate the performances of this approach, particularly in ambiguous situations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.