Abstract
Using vehicle cameras to automatically assess road weather conditions requires that the road surface first be identified and segmented from the imagery. This is a challenging problem for uncalibrated cameras such as removable dash cams or cell phone cameras, where the location of the road in the image may vary considerably from image to image. Here we show that combining a spatial prior with vanishing point and horizon estimators can generate improved road surface segmentation and consequently better road weather classification performance. The resulting system attains an accuracy of 86 % for binary classification (bare vs. snow/ice-covered) and 80 % for 3 classes (dry vs. wet vs. snow/ice-covered) on a challenging dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.