Abstract

Increasing background salinity in watersheds has largely been attributed to road salt retention in groundwaters due to their long residence times. However, laboratory studies demonstrate that soils temporarily store salts, either in porewater or adsorbed onto particles. Field studies of road salt retention in soils are nevertheless rare, and mechanisms of salt transport across multiple hydrological reservoirs (e.g., from soil to groundwater) are unknown. Thus, we collected roadside soil porewater and karst spring water weekly for ~1.5 yr to determine salt transport through the vadose zone into the phreatic zone. We observed dual retention mechanisms of sodium (Na+) and chloride (Cl−) in soils due to slow porewater movement, causing ion movement through the soil as slow as 1.3 cm/day, and cation exchange processes, leading to initial Na+ retention followed by later release months after application. Cation exchange processes also caused base cation loss from exchange sites into mobile porewater. Rapid Na+ and Cl− delivery to groundwater occurred through karst conduits during the winter. However, elevated background levels of salt ions in groundwater during the non-salting months indicated accumulation in the catchment due to slower porewater flow in the soil and rock matrix and delayed Na+ release from soil exchange sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.