Abstract
In this work, we propose a road pavement damage detection deep learning model based on feature points from a local minimum of grayscale. First, image blocks, consisting of the neighborhood of feature points, are cut from the image window to form an image block dataset. The image blocks are then input into a convolutional neural network (CNN) to train the model, extracting the image block features. In the testing process, the feature points as well as the image blocks are selected from a test image, and the trained CNN model can output the feature vectors for these feature image blocks. All the feature vectors will be combined to a composite feature vector as the feature descriptor of the test image. At last, the classifier of the model, constructed by a support vector machine (SVM), gives the classification as to whether the image window contains damaged areas or not. The experimental results suggest that the proposed pavement damage detection method based on feature-point image blocks and feature fusion is of high accuracy and efficiency. We believe that it has application potential in general road damage detection, and further investigation is desired in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.