Abstract

Road noise is always a major concern in automotive industries. The contribution of the floor of a automotive vehicle to road noise is large because of its large area and close location to chassis in terms of structure-borne noise. Therefore, the panel shape and damper of the floor should be carefully designed, which are effective on medium frequency region of the road noise. Because there are so many design options on the floor panels that experience high modal density and short wavelength at medium frequencies, traditional mode-decoupling approaches are no longer efficient. This study shows that a proposed optimization process based on a finite element model and a genetic algorithm is successful to reduce road noise at medium frequencies. Some background theories about the genetic algorithm and acoustic radiation efficiency in the frame of vibro-acoustics are explained to understand the optimization process. Vehicle performance evaluation and experimental study are given to validate this study. Finally, this verified process is applied to a sport utility vehicle (SUV) under development, whose road noise reduction is shown to be successful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call