Abstract
Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots. In outdoor unstructured environments such as villages and deserts, the roads are usually not well-paved and have variant colors or texture distributions. Traditional region- or edge-based approaches, however, are effective only in specific environments, and most of them have weak adaptability to varying road types and appearances. In this paper we describe a novel top-down based hybrid algorithm which properly combines both region and edge cues from the images. The main difference between our proposed algorithm and previous ones is that, before road detection, an off-line scene classifier is efficiently learned by both low- and high-level image cues to predict the unstructured road model. This scene classification can be considered a decision process which guides the selection of the optimal solution from region- or edge-based approaches to detect the road. Moreover, a temporal smoothing mechanism is incorporated, which further makes both model prediction and region classification more stable. Experimental results demonstrate that compared with traditional region- and edge-based algorithms, our algorithm is more robust in detecting the road areas with diverse road types and varying appearances in unstructured conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.