Abstract
This paper presents a novel approach for road marking detection and classification based on machine learning algorithms. Road marking recognition is an important feature of an intelligent transportation system (ITS). Previous works are mostly developed using image processing and decisions are often made using empirical functions, which makes it difficult to be generalized. Hereby, we propose a general framework for object detection and classification, aimed at video-based intelligent transportation applications. It is a two-step approach. The detection is carried out using binarized normed gradient (BING) method. PCA network (PCANet) is employed for object classification. Both BING and PCANet are among the latest algorithms in the field of machine learning. Practically the proposed method is applied to a road marking dataset with 1,443 road images. We randomly choose 60% images for training and use the remaining 40% images for testing. Upon training, the system can detect 9 classes of road markings with an accuracy better than 96.8%. The proposed approach is readily applicable to other ITS applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.