Abstract
Abstract. Urban roads in remote sensing images will be disturbed by surrounding ground features such as building shadows and tree shadows, and the extraction results are prone to problems such as incomplete road structure, poor topological connectivity, and poor accuracy. For mountain roads, there will also be problems such as hill shadow or vegetation occlusion. We propose an improved Deeplabv3+ semantic segmentation network method. This method uses ResNeSt, which introduces channel attention, as the backbone network, and combines the ASPP module to obtain multi-scale information, thereby improving the accuracy of road extraction. Analysis of the experimental results on the Deeplglobe dataset shows that the intersection ratio and accuracy of the method in this paper are 63.15% and 73.16%, respectively, which are better than other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.