Abstract

We present a fast, robust road detection and tracking algorithm for aerial images taken from an Unmanned Aerial Vehicle. A histogram-based adaptive threshold algorithm is used to detect possible road regions in an image. A probabilistic hough transform based line segment detection combined with a clustering method is implemented to further extract the road. The proposed algorithm has been extensively tested on desert images obtained using an Unmanned Aerial Vehicle. Our results indicate that we are able to successfully and accurately detect roads in 96% of the images. We experimentally validated our algorithm on over a thousand aerial images obtained using our UAV. These images consist of straight and curved roads in various conditions with significant changes in lighting and intensity. We have also developed a road-tracking algorithm that searches a local rectangular area in successive images. Initial results are presented that shows the efficacy and the robustness of this algorithm. Using this road tracking algorithm we are able to further improve the road detection and achieve a 98% accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.